The Modder’s Guide and General Referendum

(TMGAGR)

Assembled, formatted and partially created by LostInGeneral

DO NOT claim this as your own work or modify it without my permission.
CONTENTS (as organized by difficulty/skill level)

Beginner

I. Extracting the WAD file and Free-roam

II. All about TNG files

III. The Basics of Level Scripting

IV. Limitations of the Modding Community (Just what CAN we do?)

V. Basic Utilities: A primer to the tools YOU need

Intermediate

VI. Other files in the Levels directory (and their purposes)
VII. WLD editing
VIII. Effectively creating NPCs
IX. Basic texture importing/exporting/swapping
Advanced (more to come soon!)
X. DDS files: alpha channels, MIP-maps, and grizzly bears

XI. .BIG manual file swapping (basically obsolete)
BEGINNER INFORMATION


I. Extracting the WAD file, and Free-roam


This, you will find, is one of the easiest things you could conceivably do to mod Fable, owing entirely to Silverback’s free-roam application. Extracting the files contained in the WAD file isn’t a crucial operation, but you really should do it, as it makes things a lot simpler. So, download yourself a copy of the application and we’ll begin. As a side note, you’re going to need the .NET framework for this, so please get it before starting.

First, open the program. Click File, then Open. Find your FinalAlbion.wad (look under /Data/Levels in your Fable directory) Make sure you have chosen to extract the TNGs, and you can pick whether you want to extract the LEVs as patched or un-patched. Extracting them as patched will enable what is referred to as free-roam; that is, being able to walk wherever you want on a map. If you prefer the classical feel, you can choose un-patched, which is of course the traditional sort of thing. Boundaries, and such. Whatever you feel like.


So, click “rip” and extract the files. You should end up with a folder called “FinalAlbion” in your /Levels folder, with two files – entitled creaturehub – outside of the folder (just in /Levels) If not, simply move the files to the /Levels directory.


Lastly, go to userst.ini (in your root Fable directory) and change “UseLevelWAD” to “False”. Play the game, make sure everything works, and then delete FinalAlbion.wad. You no longer need it.

II. All about TNG Files


So now you’ve extracted the files in FinalAlbion.wad, and you’re wondering just what, exactly, you extracted, and why. Well, I’ll tell you. FinalAlbion.wad contained the levels needed for Fable to run. And now, assuming you did things right, they’re all out of the WAD and into a folder.

Looking in this folder, you’ll see a whole mess of files. You’ll notice every map has two files – a TNG and a LEV. The TNG for any given map contains the script data for that map. You can open it up with a basic text editor, or if you prefer organization you can grab yourself the TNG parser. Now then, every script for every object (except for villagers; I’ll get to that in a minute) in that map are kept in this file. Different types of scripts have different jobs: there are buildings, individual creatures, generic objects, all those things.


Many TNGs also have Holy Sites. For the most part, these are important to you for one reason; testing purposes. By changing the value in brackets in the line SetStartingHolySite you can use a Holy Site from any map to start in that map. If there’s a Holy Site, it will be classified as such, so you should see a Newthing Holy Site. The ScriptName value is what you copy and paste into the userst.ini. Don’t remove the quotes when you do this.


Back on track. TNGs are divided by what parts of the game the scripts in it should be used. By using the command XXXSectionStart (section) this is done. Anything contained in the section NULL is used at every point in the game. Any other section is more likely than not a quest.


As for the LEVs, there’s not much you need to know about them, since you likely won’t be editing them. They have data for the level itself; vegetation, static decoration, geometry, navigation data…things like that. There was a point where, if you wanted free-roaming, you had to hand-edit it yourself in the LEV. This is no longer so and at the beginner stage it really isn’t necessary to edit the LEV – even as you get further on it’s still not really very important. You should just leave them alone.

III. The Basics of Level Scripting


So you’ve extracted your WAD file. You’ve got some background information on TNGs. You, my friend, are ready to begin modifying TNG files. Congratulations. 


First of all, you need to know what a UID is. You’re going to be working with them quite a bit. Take a look at any TNG, and you’ll notice that every script has a UID attached to it. Villages, markers, people, building, objects, holy sites – everything has a UID. Consider this to be a sort of identification number to that script: it has to be unique, or it’s not really much of an identification number, is it? That’s right. It wouldn’t be. 


So, here’s how the scripts are broken up:

· NewThing (type) – Defines what type of script it is.
· Player – For most everything this is set to “4”. There are exceptions, but for the time being this line shouldn’t really be important to you.

· UID – Covered above. 
· DefinitionType – What the script is under the confines of the Thing type it is. Anything with the type “Object” will start with the line OBJECT_, for villages it will be VILLAGE_, etc. Different objects are different things, of course, and different villages do different things.

· ScriptName – The engine script is uses. Only in special circumstances is this needed – mostly, it won’t use any (and thereby will just be labeled NULL)

· ScriptData – Certain engine script need some extra data. Signs, for example, require text to be put in. That sort of data will be put in here.

· ThingGamePersistent and ThingLevelPersistent – When these are set to “TRUE” the script will only appear once, whereas when they are set to FALSE they will respawn every time you re-enter that area.
· CTC Scripting – This is the real meat of the script. These commands add things that deal with the script. These should always start with StartCTC(command name), follow with variables associated with it, and end with a EndCTC(command name). These will be different depending on the script and what it’s supposed to do. You can find a list of CTC commands and variables in a site indexed in Appendix C.

Every script should have a CTCPhysicsStandard, which tells where the script is located and how it is positioned.
I’m not going to tell you how to write your first script. Using this information and experimenting and other scripts as a base should be enough to get you started. If you need further help, check the FableTLCMod website; there are number of threads that will help you out further.

IV. Limitations of the Modding Community (just what CAN we do?)


So by now you know the basics of level scripting. You may have already made your first scripts. Now you’re asking what the modders can and cannot do.

Some people are under the impression that we are able to mod anything in the game. This is just not true. There are limitations to what we are able to do. 

For one, you likely won’t be able to edit things like health or experience by yourself. Only some people are capable of doing this, because it is not saved but it kept in the memory, so therefore you need a memory editor. These are complicated, tedious, and take practice to use, so you may as well just use a trainer.

Also, you won’t be able to make your own quests or change (much) about the stuff contained in quests. This is hardcoded into the EXE.

We can’t yet edit models and animations, because those haven’t been fully figured out and adapted yet. You can change textures, but only to a certain degree can you change the textures in the game and this is very difficult to do.

Finally, we can’t make new levels. This is because data that levels require is all stored in the STB file, which we can’t edit sensibly yet, because it’s sort of a complicated file.

As you mod you’ll learn and get a better understanding of what we can and can’t do. Consider this an outline as you begin so you don’t pursue the impossible.

V. Basic Utilities – a Primer to the Tools YOU Need


The following are the utilities for modding that you are most likely to use and what they do.
The Free-roam Utility

Extracts the files in the WAD file so you can edit them. You can extract them as patched (free roam) or unpatched (standard)

PPF-o-Matic

Needed for both the application and creating of graphical effecting mods. Very useful.

Hex Editor

You’re going to need this for graphic swapping and some other things. I use Hex Workshop, but you’re free to browse around and pick what you like best.

Windows Calculator

If you swap graphics using my guide, you’re going to need to use this.

Text Editor

This seems like a given. It edits a majority of file formats.

INTERMEDIATE INFORMATION

VI. Other files in the levels directory (and their purposes)

· FinalAlbion.bwd: contains some miscellaneous information. It’s believed to be a region definition file and relates to the WLD file. You won’t be editing it, so don’t bother with it.

· FinalAlbion.gtg: holds some global level scripts. Also not very important. 
· FinalAlbion.qst: compilation of quests. The Boolean values beside them (true/false) show whether or not the quest is activated by default.

· FinalAlbion_RT.stb: contains a massive amount of information regarding a number of things. This file is not really figured out yet, so don’t bother with this one right now.

· GlobalQuests.qst: sort of like FinalAlbion.qst only these are global quests. Check them out and you should be able to figure out what they do.

· FinalAlbion.wld: contains region definitions, the levels contained therein, and information on the maps.

VII. WLD Editing

The WLD File, as stated above, contains region information. Regions are any area you enter with a mini-map – that is to say every location in the game. Editing the WLD file allows you to link maps together to make free-roam even more expansive. First, head to the “region” part of the WLD, and look under Region 1 (Lookout Point) Among other things, you’ll see a bunch of maps listed, starting with either ContainsMap or SeesMap. If it’s the former, it’s a map that’s physically in the region, so you can walk on it. If it’s the latter you can only see it, not walk on it. You can pretty much add any map to any region, but since maps link up (with the exception of some places; more on that in a minute) you’ll have to be careful about it. Also, try not to include too many towns in a region, because it will slow down considerably.

Some places – all internal locations like the prison, Bowerstone, Hero’s Guild – can’t be added this way, because they don’t link up. Other than that, pretty much everything works. You could theoretically add the entire world into one region, but your frame rate will drop so much it’s not even worth it.

Experiment with it, and enjoy. It’s not really that difficult.

VIII. Effectively Creating NPCs


By now, you know that you’ll need a unique UID for your NPC, so I don’t think I need to go over that again.

If you want to make a new NPC, although you could make one from scratch, it would be better if you used an existing NPC script as a base for you to, in a manner of speaking, “customize”. Let’s go over a basic NPC script (one of the heroes from the Arena quest), and I’ll give a little information for each section.

NewThing AICreature; ​ As mentioned earlier, this defines what type of script you’re using. For an NPC it will always be AICreature.
Player 2; Again, don’t worry about this. You won’t need to change it.
UID 18446741874686297332; Just the UID, nothing special.
DefinitionType "CREATURE_ASSASSIN"; What creature it is. Refer to the decompiled names.bin for different creatures.
ScriptName Needle; This is the script for the creature. You probably won’t need this, but if you do you can likely find it for yourself. If you don’t need a script, simply write NULL here.
ScriptData "NULL"; If you’re using a script, it might need some extra data. Put it in here. If not (as this script did not) just write NULL.
ThingGamePersistent FALSE; For these you should just leave them at FALSE unless, under some circumstance, you need to go otherwise.
ThingLevelPersistent FALSE; See above.
StartCTCPhysicsNavigator; Denotes the beginning of the physics script.
PositionX 19.37793; These detail the position of your object in the TNG.
PositionY 32.345947; See above.
PositionZ 100.210526; See above.
RHSetForwardX -0.2222; The X rotation. You probably won’t need to change this ever.
RHSetForwardY 0.974978; The Y rotation is the most important if you need to rotate something. Increase the number for counterclockwise rotation, decrease for clockwise.
RHSetForwardZ 0.0;The Z rotation. Don’t worry about it.
RHSetUpX -0.000583; In all honesty I never change these so I’ve forgotten what they are (tilting, or some such business) Don’t bother with them, they’re not important.
RHSetUpY -0.000133; See above.
RHSetUpZ 0.999994; See above.
EndCTCPhysicsNavigator; Denotes the end of the physics script.
StartCTCTargeted; Denotes the beginning of a script that tells whether or not the script in question is targetable.
Targetable TRUE; Makes it targetable. You should always have this enabled for NPCs.
EndCTCTargeted; Ends the script.
StartCTCTalk; Starts the script for some talking commands. You shouldn’t need these in custom-made NPCs so this section is useless.
EndCTCTalk; Ends the script.
StartCTCEditor; Starts a script that deals with the editor. The only command it seems to use determines whether or not an object is locked in place, and you won’t need this.
EndCTCEditor; Ends the script.
StartCTCVillageMember; Starts a script that tells whether or not the NPC is part of a village.
VillageUID 0; The UID of the village. If this is set to zero then the NPC is not a member of a village.
EndCTCVillageMember; Ends the script.
StartCTCContainerRewardHero; Starts a sort of a container script. Don’t worry about this one.
EndCTCContainerRewardHero; Ends the script.
StartCTCEnemy; Starts a script that tells if the object is an enemy.
FriendsWithEverythingFlag FALSE; Determines if the NPC will act friendly toward everything.
EnableFollowersEnemyProxy TRUE; I can’t remember what this is, exactly, but it should be set to “true”.
FactionName ""; Determines the faction the NPC belongs to. Leave this blank; this is always the case in the original scripts.
EndCTCEnemy; Ends the script.
StartCTCCreatureOpinionOfHero; Starts a script dealing with the creature’s opinion of the hero.
InteractedFlag FALSE; A flag to tell if the NPC has interacted with the hero. Don’t bother changing it.
GreetedFlag FALSE; Same as above, only for having greeted the hero.
LastOpinionReactionFrame 0; Just leave this at zero.
NumberOfTimesHit 0.0; Don’t change this, either.
ToleranceToBeingHitOverride -1.0; Although I’m not certain I recall this as being how tolerant the NPC is to being hit by you before they react negatively. In custom NPCs it’s usually at -1 so they don’t attack you no matter how often you hit them.
FrameToDecayNumberOfTimesHit 2147483647; Don’t change this number.
ForcedAttitude 18; How the NPC feels about the hero. 18 is the default. You can experiment with different numbers, if you feel the need.
HeroOpinionEnemy FALSE; I think this determines if the NPC is automatically an enemy. Best just to leave this at false.
EndCTCCreatureOpinionOfHero; Ends the script.
Health 110.0; The health of the creature. You can fool with this if you want; it should be obvious how it works.
OverridingBrainName NULL; Leaving this at NULL will have the creature act as it is supposed to. Changing this to a different brain file (there’s a list in names.bin) will make the creature “think” like the brain you overrode the original with.
HasInformation FALSE; For integral quest NPCs. Don’t worry about this.
WanderWithInformation FALSE; See above.
WaveWithInformation FALSE; See above.
ContinueAIWithInformation FALSE; See above.
EnableCreatureAutoPlacing FALSE; Is pretty much always set to false.
AllowedToFollowHero FALSE; Sets whether or not the NPC can follow the hero.
RegionFollowingOverriddenFromScript FALSE; I *think* this determines whether or not the NPC will follow you into different regions.
RespondingToFollowAndWait TRUE; Sets whether or not this NPC responds to the “follow” and “wait” commands. 
CanBeCourted FALSE; Sets whether or not you can give gifts/flirt/etc with this NPC.
CanBeMarried FALSE; Sets whether or not you can marry it.
InitialPosX 2291.37793; I can’t remember exactly what this does. Sorry. I’ll update it when I get the information.
InitialPosY 3904.345947; See above.
InitialPosZ 100.210526; See above.
EndThing; Ends the NPC’s script.
IX. Basic Texture Importing/Exporting/Swapping

You want to move on to changing textures, do you? Well, it’s been made a lot easier thanks to the new Fable Explorer tool. You can get it off the main forums.

We’ll start with swapping. Pop open your Fable Explorer, and open up textures.big (it’s always wise to make a back-up, even for things like this) Of course we will be working with the main bank, since the GUI bank contains textures only for the tool the developers used.


Let’s say, for example, that you, for whatever reason, wanted to swap the first and second files (textures for the old version of the Guildmaster and the dog textures; this change wouldn’t actually show up in-game since neither of these textures are actively used) Open both of these textures up in the explorer. You should be looking at two textures, with some information. Look right below the symbol name, and you’ll find the ID number. In this case, we’ve got the IDs 1 (for the old Guildmaster) and 2 (for the dog). All you have to do is switch them around. You would put 2 for the Guildmaster’s ID and 1 for the dog’s. Make sure you click “Apply Changes” for whatever textures you’re working with. When you’re done with your changes, just click “Save Changes”.


Now, for exporting and importing. If there’s a specific texture you’d like to edit, find it in the BIG and click the “Save As” button, and choose a format to save it as (whatever you prefer) The reason you use the “Save As” feature instead of the “Export” feature is that (if I remember correctly) the latter exports the whole stream of data associated with that texture. You could, theoretically, put this into an editable format, only that’s a little bit technical for most of you out there.


Now that you have your texture saved on your hard drive, feel free to edit it however you want. Once that’s done, go back into Fable Explorer, and go back to the original texture. Now, here’s where you may have to do a bit of thinking before you get your shiny new texture imported (don’t panic, it’s not much)


First, you have to check if the texture is DXT1 or DXT3. It will display this information when you open the texture (under “Entry Type”) but another way to tell is if the image has full transparencies/translucencies (it will appear pink/semi-pink in these areas) If it does, it’s a DXT3. If it’s a DXT1, then it’s simple. Just click “Open New”, don’t change the importing format, and select the file you edited. If your texture is a DXT1, set the value marked “Alpha” to 0. Fable Explorer automatically sets this to 1 but it should always be zero for DXT1 textures (and always 1 for DXT3)


And that’s all you need to know to get you started in the fantastical world of texture modification.


Please note you can also use the swapping method for meshes in graphics.BIG.
INTERMEDIATE INFORMATION

X. DDS Files: alpha channels, MIP-maps, and grizzly bears


You may have already heard a little bit about the infamous DDS (or DirectDraw Surface) format. You may have found out that it is Fable’s default texture format, or you may have seen it when you went to save a texture. Maybe you saw it in another game’s files. It’s not a very common format outside of games, and you may be wondering why it’s used. I’m going to try and explain the basics of this format so that maybe you will earn yourself a better understanding of it.


To begin with, the DDS file isn’t really made for just storing images. You should think of it more as a format designed specifically with three-dimensional graphics in mind. The quality of the format isn’t great (in comparison to certain other formats), and it doesn’t compress especially well.


This may tempt you to wonder why it is used. Well, for one, the DDS format can remain compressed even after it is loaded into memory, unlike other image formats. This is useful for system performance. Another important feature is the support for alpha channels. These define transparencies and translucencies in an image, and are usually represented by a black-to-white gradated version of the image, where white is opaque and black is transparent (and all the shades in between).


Fable uses two kinds of DDS files: DXT1 and DXT3. The difference? DXT1 doesn’t use an alpha channel (technically, it can be saved with a 1-bit alpha channel, but you don’t need to concern yourself over that) and DXT3 uses explicit alpha. The importance of this should be obvious (alpha channels have been explained above) There is also a DXT5 (which uses interpolated alpha) but this is not used in Fable and is therefore not necessary for you to learn about.


Now you should know about MIP-maps, which are another important part of the DDS format. They’re not something to really be worried about, since you won’t be dealing with them directly, but you should be aware of them and what they’re for. MIP is simply short for multum in parvo, which is Latin for “much in a small space”. You can look at MIP-maps as being a kind of a pyramid of images, all ½ the size of the previos. They exist to increase rendering speed, simultaneously reducing artifacts. Typically, you get these generated automatically when saving in the DDS format, so you don’t really need to worry about these yourself.

When working with textures in Fable (especially DXT3) it can be good to work with them as DDS files. There are a number of utilities to open them in Photoshop. If you Google it you can probably find one in pretty short order.

XI. Manual .BIG File Swapping (basically obsolete)

I wrote this before Fable Explorer was released, and I decided to include this in here in case, for whatever reason (to familiarize yourself with the BIG format, with hex editing, whatever) you wanted to swap files by hand.

The first thing you should do is find the actual filename.

In your /data folder, you'll find a folder called "Defs". Open it, go to RetailHeaders, and theres a file called meshdata.h. Use a text editor to open this up.

You can look through the file to find what you want, but it's easier just to use CTRL+F. So, once you've found the two files you want (MESH_HERO and MESH_JACK_OF_BLADES_01) you'll notice that beside each of them is a corresponding number. This is their file number, which will be important soon enough.

So, in your hex editor, you can search for both those strings (MESH_HERO and MESH_JACK_OF_BLADES_01) as text, and you'll probably get around five or six results for each (more for the hero, most likely) Look in the later results; these are often the ones in the FileIndex. You'll know if they are because often right after the filename is the directory it's in. So, once you've found the two correct files, you'll notice that before the mesh name is an asterisk (2A in hex) Find this 2A and find the first digits that come after it (aside from zeros, of course). This is the file number in hex format; it's in decimal format in meshdata.h. You can convert them, if you need to, using the Windows Calculator.

Now, simply switch one for the other. Change the hero's number to F61D and Jack's number to CB10. Just remember that if you convert them, they'll always be reversed in the actual file. So, even though 7670 (Jack's filenumber) comes out as 1DF6, it will end up as F61D in the file itself.

